翻訳と辞書
Words near each other
・ Geoff Bull
・ Geoff Bullock
・ Geoff Burdett
・ Geoff Burrowes
・ Geoff Butler
・ Geoff Byrd
・ Geoff Cameron
・ Geoff Campbell
・ Geoff Campion
・ Geoff Cannell
・ Geoff Capes
・ Geodesic deviation
・ Geodesic dome
・ Geodesic grid
・ Geodesic manifold
Geodesic map
・ Geodesic polyarene
・ Geodesics as Hamiltonian flows
・ Geodesics in general relativity
・ Geodesics on an ellipsoid
・ Geodesign
・ Geodesium
・ Geodessus
・ Geodesy
・ Geodetic
・ Geodetic airframe
・ Geodetic astronomy
・ Geodetic datum
・ Geodetic effect
・ Geodetic Glacier


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Geodesic map : ウィキペディア英語版
Geodesic map
In mathematics—specifically, in differential geometry—a geodesic map (or geodesic mapping or geodesic diffeomorphism) is a function that "preserves geodesics". More precisely, given two (pseudo-)Riemannian manifolds (''M'', ''g'') and (''N'', ''h''), a function ''φ'' : ''M'' → ''N'' is said to be a geodesic map if
* ''φ'' is a diffeomorphism of ''M'' onto ''N''; and
* the image under ''φ'' of any geodesic arc in ''M'' is a geodesic arc in ''N''; and
* the image under the inverse function ''φ''−1 of any geodesic arc in ''N'' is a geodesic arc in ''M''.
==Examples==

* If (''M'', ''g'') and (''N'', ''h'') are both the ''n''-dimensional Euclidean space E''n'' with its usual flat metric, then any Euclidean isometry is a geodesic map of E''n'' onto itself.
* Similarly, if (''M'', ''g'') and (''N'', ''h'') are both the ''n''-dimensional unit sphere S''n'' with its usual round metric, then any isometry of the sphere is a geodesic map of S''n'' onto itself.
* If (''M'', ''g'') is the unit sphere S''n'' with its usual round metric and (''N'', ''h'') is the sphere of radius 2 with its usual round metric, both thought of as subsets of the ambient coordinate space R''n''+1, then the "expansion" map ''φ'' : R''n''+1 → R''n''+1 given by ''φ''(''x'') = 2''x'' induces a geodesic map of ''M'' onto ''N''.
* There is no geodesic map from the Euclidean space E''n'' onto the unit sphere S''n'', since they are not homeomorphic, let alone diffeomorphic.
* The gnomonic projection of the hemisphere to the plane is a geodesic map as it takes great circles to lines and its inverse takes lines to great circles.
* Let (''D'', ''g'') be the unit disc ''D'' ⊂ R2 equipped with the Euclidean metric, and let (''D'', ''h'') be the same disc equipped with a hyperbolic metric as in the Poincaré disc model of hyperbolic geometry. Then, although the two structures are diffeomorphic via the identity map ''i'' : ''D'' → ''D'', ''i'' is ''not'' a geodesic map, since ''g''-geodesics are always straight lines in R2, whereas ''h''-geodesics can be curved.
* On the other hand, when the hyperbolic metric on ''D'' is given by the Klein model, the identity ''i'' : ''D'' → ''D'' ''is'' a geodesic map, because hyperbolic geodesics in the Klein model are (Euclidean) straight line segments.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Geodesic map」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.